Принимаем Z-Payment

Формулы для решения задач по физике

МАГНЕТИЗМ


п/п
Наименование параметраФормулаОбозначения
4.1Закон Био-Савара-Лапласа




Модуль вектора

Модуль вектора




― магнитная индукция поля, создаваемого элементом проводника с током; μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, ― вектор, равный по модулю длине dl проводника и совпадающий по направлению с током; I ― сила тока в проводнике, ― расстояние до проводника
α ― угол между векторами и
― напряженность магнитного поля, создаваемого элементом проводника с током
4.2Индукция магнитного поля, создаваемого бесконечно длинным прямым проводником с током
Напряженность магнитного поля



вывод формул
μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, I ― сила тока в проводнике, a ― расстояние до проводника
4.3Индукция магнитного поля в центре кругового проводника с током
Напряженность магнитного поля

μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, I ― сила тока в проводнике, R ― радиус проводника
4.4Индукция магнитного поля на оси кругового проводника с током
Напряженность магнитного поля


вывод формул
μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, I ― сила тока в проводнике, R ― радиус проводника, a ― расстояние до плоскости проводника
4.5Индукция магнитного поля внутри длинного соленоидаμ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, I ― сила тока в проводнике, N ― количество витков, l ― длина соленоида
4.6Магнитная индукция поля, создаваемая отрезком проводника
вывод формулы
μ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная, a ― расстояние до оси проводника, α1 и α2 ― углы между направлением тока и направлением на точку, в которой создано магнитное поле, вершинами которых являются соответственно начало и конец прямого участка проводника
4.7Связь между напряженностью H и индукцией B магнитного поляμ ― магнитная проницаемость среды, μ0 = 4π∙10−7 Гн/м ― магнитная постоянная
4.8Связь между электрической и магнитной напряженностями волныЕ0 ― амплитуда электрической напряженности, H0 ― амплитуда магнитной напряженности
4.9Фазовая скорость волны v равнас ― скорость света в вакууме; ε ― диэлектрическая проницаемость; μ ― магнитная проницаемость
4.10Индуктивность катушки равнаμ0 = 4π∙10−7 Гн/м ― магнитная постоянная; N ― количество витков; N = l/d, d ― диаметр проводника катушки; l ― длина катушки; V ― объем катушки; S ― площадь витка катушки
4.11Средняя объемная плотность энергииμ0 = 4π∙10−7 Гн/м ― магнитная постоянная; μ ― магнитная проницаемость среды; для вакуума μ = 1; Н ― действующее значение напряженности магнитного поля
4.12Средняя объемная плотность энергииε0 = 8,85∙10−12 Ф/м ― электрическая постоянная, ε ― диэлектрическая проницаемость среды, E ― действующее значение напряженности электрического поля
4.13Сила , действующая на заряд Q, движущийся со скоростью в магнитном поле с индукцией (сила Лоренца)
или
α ― угол, образованный вектором скорости движения частицы и вектором индукции магнитного поля
4.14Cила Ампера (сила, действующая на проводник с током в магнитном поле)
I ― сила тока, l ― длина проводника, В ― индукция магнитного поля, α ― угол между векторами
4.15Количество заряда, протекающее в контуре
вывод формулы
ΔΨ ― изменение потокосцепления контура; R ― сопротивление контура; N ― количество витков в контуре; ΔФ ― изменение магнитного потока, пронизывающего контур; S ― площадь витка; ΔB ― изменение магнитной индукции
4.16Циклическая частота колебаний в контуреL ― индуктивность контура; C ― емкость контура
4.17Мгновенное значение I силы тока в цепи, обладающей активным сопротивлением R и индуктивностью L, после размыкания цепиI0 ― значение силы тока в цепи при t = 0; t ― время, прошедшее с момента размыкания цепи
4.18Мгновенное значение I силы тока в цепи, обладающей активным сопротивлением R и индуктивностью L, после замыкания цепиε ― э.д.с. источника тока; t ― время, прошедшее с момента замыкания цепи
4.19Основной закон электромагнитной индукцииεi ― электродвижущая сила индукции; N ― число витков контура; Ψ ― потокосцепление
4.20Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока I:L ― индуктивность контура или катушки
4.21Работа по перемещению проводника или по повороту контура в магнитном полеI ― сила тока в проводнике, контуре; dФ ― пересекаемый проводником магнитный поток либо изменение магнитного потока через замкнутый контур
4.22Вращающий момент, действующий на контур с током, помещенный в магнитное поле
Значение вращающего момента



При α=π/2 имеем


При α=0 или α=π имеем
― индукция магнитного поля; m ― магнитный момент контура, m = IS, где I ― ток, протекающий по контуру, S ― площадь контура;
α ― угол между векторами m и

<< ЭЛЕКТРИЧЕСТВО

ОПТИКА >>