параметров вычислить следующим формулам
Задача v0354
Вариант V=1.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0355
Вариант V=2.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0356
Вариант V=3.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0357
Вариант V=4.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0358
Вариант V=5.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0359
Вариант V=6.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0360
Вариант V=7.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0361
Вариант V=8.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0362
Вариант V=9.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0363
Вариант V=10.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0364
Вариант V=11.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0365
Вариант V=12.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0366
Вариант V=13.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0367
Вариант V=14.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0368
Вариант V=15.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0369
Вариант V=16.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0370
Вариант V=17.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0371
Вариант V=18.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0372
Вариант V=19.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0373
Вариант V=20.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0374
Вариант V=21.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0375
Вариант V=22.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0376
Вариант V=23.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0377
Вариант V=24.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0378
Вариант V=25.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0379
Вариант V=26.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0380
Вариант V=27.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0381
Вариант V=28.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0382
Вариант V=29.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0383
Вариант V=30.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р. Найти вероятность того, что событие А происходит:
а) точно G раз;
б) меньше чем L раз;
в) больше чем М раз.
Значения параметров р, n, G, L и M вычислить по следующим формулам:
D=V·100+200, p=1/D.
S=остаток((V+3)/3)+1;
n=S·D,
G=остаток((V+5)/4);
L=остаток((V+7)/5)+1;
M=остаток((V+5)/4)+1.
Задача v0384
Вариант V=1.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0385
Вариант V=2.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0386
Вариант V=3.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0387
Вариант V=4.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0388
Вариант V=5.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0389
Вариант V=6.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0390
Вариант V=7.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0391
Вариант V=8.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0392
Вариант V=9.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0393
Вариант V=10.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0394
Вариант V=11.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0395
Вариант V=12.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0396
Вариант V=13.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0397
Вариант V=14.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0398
Вариант V=15.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0399
Вариант V=16.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0400
Вариант V=17.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0401
Вариант V=18.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0402
Вариант V=19.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0403
Вариант V=20.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0404
Вариант V=21.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0405
Вариант V=22.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0406
Вариант V=23.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0407
Вариант V=24.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0408
Вариант V=25.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0409
Вариант V=26.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0410
Вариант V=27.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0411
Вариант V=28.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0412
Вариант V=29.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.
Задача v0413
Вариант V=30.
В каждом из n независимых испытаний событие А происходит с постоянной вероятностью р.
а) Найти вероятность того, что относительная частота k/n события А отличается по абсолютной величине от вероятности р не больше чем на ε>0.
б) Найти максимальное отклонение относительной частоты k/n события А от вероятности р, если вероятность такого отклонения равна р1.
в) Найти число всех испытаний n, чтобы с вероятностью р1 можно было утверждать, что относительная частота k/n появления события А отклоняется от вероятности р по абсолютной величине не более, чем на ε.
Значения параметров n, p, ε и р1 вычисляются по следующим формулам:
n=600–V·10; p=0,85–V/100; ε=0,0055–V/10000; р1=0,9754?V/500.