| |||||||||||
Специальный поиск | |||||||||||
|
|||||||||||
точка совершает одновременно два гармонических колебания Задача 11322 Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениями выражаемых уравнениями: 1) x = Acosωt и y = Acosωt; 2) x = Acosωt и y = A1cosωt; 3) x = Acosωt и y = Acos(ωt+φ1); 4) x = A2cosωt и y = Acos(ωt+φ2); 5) x = A1cosωt и y = A1sinωt; 6) x = Acosωt и y = A1sinωt; 7) x = A2sinωt и y = A1sinωt; 8) x = A2sinωt и y = Asin(ωt+φ2). Найти (для восьми случаев) уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: А = 2 см, A1 = 3 см, А2 = 1 см; φ1 = π/2, φ2 = π. Задача 26197 Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениями выражаемых уравнениями x = Acosωt и y = Acosωt. Найти (для восьми случаев) уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: А = 2 см, A1 = 3 см, А2 = 1 см; φ1 = π/2, φ2 = π. Задача 26198 Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениями выражаемых уравнениями x = Acosωt и y = A1cosωt. Найти (для восьми случаев) уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: А = 2 см, A1 = 3 см, А2 = 1 см; φ1 = π/2, φ2 = π. Задача 26199 Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениями выражаемых уравнениями x = Acosωt и y = Acos(ωt+φ1). Найти (для восьми случаев) уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: А = 2 см, A1 = 3 см, А2 = 1 см; φ1 = π/2, φ2 = π. Задача 26200 Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениями выражаемых уравнениями x = A2cosωt и y = Acos(ωt+φ2). Найти (для восьми случаев) уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: А = 2 см, A1 = 3 см, А2 = 1 см; φ1 = π/2, φ2 = π. Задача 26201 Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениями выражаемых уравнениями x = A1cosωt и y = A2sinωt. Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: А = 2 см, A1 = 3 см, А2 = 1 см; φ1 = π/2, φ2 = π. Задача 26202 Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениями выражаемых уравнениями x = Acosωt и y = A1sinωt. Найти (для восьми случаев) уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: А = 2 см, A1 = 3 см, А2 = 1 см; φ1 = π/2, φ2 = π. Задача 26203 Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениями выражаемых уравнениями x = A2sinωt и y = A1sinωt. Найти (для восьми случаев) уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: А = 2 см, A1 = 3 см, А2 = 1 см; φ1 = π/2, φ2 = π. Задача 26204 Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениями выражаемых уравнениями x = A2sinωt и y = Asin(ωt+φ2). Найти (для восьми случаев) уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: А = 2 см, A1 = 3 см, А2 = 1 см; φ1 = π/2, φ2 = π. Задача 21121 Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих во взаимно перпендикулярных направлениях. Уравнения колебаний х = A cos ωt и у = A cos (ωt + φ). Определить уравнение траектории точки в виде f(x, у) = 0. Принять А = 2 см, φ = π/2. Задача 23471 Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями: x = 2cosωt см и y = cosωt см. Запишите уравнение траектории результирующего движения точки и постройте ее с соблюдением масштаба. |