Специальный поиск

тепловая машина работающая идеальный цикл карно


Задача 50370

Идеальная тепловая машина, работающая по циклу Карно, получила теплоту от нагревателя при температуре 200 °С. Холодильник имеет температуру 100 °С. За определенное время машина получила от нагревателя 10 кДж энергии. Определить выполненную работу, переданное холодильнику количество теплоты и КПД.


Задача 13882

Идеальная тепловая машина, работающая по циклу Карно, выполняет за один цикл работу 73,5 кДж. Температура нагревателя 100°С, а холодильника — 0°С. Найти КПД машины и количество теплоты, передаваемое за один цикл холодильнику.


Задача 13936

Идеальная тепловая машина, работающая по циклу Карно, имеет температуру нагревателя 227 °С, температуру холодильника 127 °С. Во сколько раз надо увеличить температуру нагревателя, чтобы КПД машины увеличился в 3 раза?


Задача 16417

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот
Т1 = 420 К
Р1 = 2,1·105 Па
V1 = 1 л = 1·10–3 м3
a = 2,0
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 16418

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — кислород
Т1 = 400 К
Р1 = 1,8·105 Па
V1 = 1 л = 1·10–3 м3
a = 2,0
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 16419

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот
Т1 = 350 К
Р1 = 2,7·105 Па
V1 = 6 л = 6·10–3 м3
a = 3,0
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 16420

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — гелий
Т1 = 380 К
Р1 = 2,2·105 Па
V1 = 6 л = 6·10–3 м3
a = 3,0
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20012

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот
Т1 = 420 К
Р1 = 2,1·105 Па
V1 = 2 л = 2·10–3 м3
a = 2,0
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20013

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — аргон
Т1 = 420 К
Р1 = 2·105 Па
V1 = 2 л = 2·10–3 м3
a = 2,0
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20014

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — аргон
Т1 = 420 К
Р1 = 2·105 Па
V1 = 1 л = 1·10–3 м3
a = 2,0
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20015

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — водород
Т1 = 400 К
Р1 = 1,9·105 Па
V1 = 2 л = 2·10–3 м3
a = 2,0
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20016

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — водород
Т1 = 400 К
Р1 = 1,9·105 Па
V1 = 1 л = 1·10–3 м3
a = 2,0
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20017

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — кислород
Т1 = 400 К
Р1 = 1,8·105 Па
V1 = 2 л = 2·10–3 м3
a = 2,0
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20018

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — гелий
Т1 = 450 К
Р1 = 1,7·105 Па
V1 = 2 л = 2·10–3 м3
a = 2,0
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20019

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот гелий
Т1 = 450 К
Р1 = 1,7·105 Па
V1 = 1 л = 1·10–3 м3
a = 2,0
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20020

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — воздух
Т1 = 450 К
Р1 = 1,6·105 Па
V1 = 2 л = 2·10–3 м3
a = 2,0
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20021

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — воздух
Т1 = 450 К
Р1 = 1,6·105 Па
V1 = 1 л = 1·10–3 м3
a = 2,0
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20022

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — углекислый газ
Т1 = 350 К
Р1 = 1,5·105 Па
V1 = 2 л = 2·10–3 м3
a = 2,0
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20024

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — углекислый газ
Т1 = 350 К
Р1 = 1,5·105 Па
V1 = 1 л = 1·10–3 м3
a = 2,0
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20025

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — водяной пар
Т1 = 350 К
Р1 = 1,4·105 Па
V1 = 2 л = 2·10–3 м3
a = 2,0
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20026

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — водяной пар
Т1 = 350 К
Р1 = 1,4·105 Па
V1 = 1 л = 1·10–3 м3
a = 2,0
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20027

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот азот
Т1 = 400 К
Р1 = 1,3·105 Па
V1 = 4 л = 4·10–3 м3
a = 2,5
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20028

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот азот
Т1 = 400 К
Р1 = 1,3·105 Па
V1 = 3 л = 3·10–3 м3
a = 2,5
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20029

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот аргон
Т1 = 400 К
Р1 = 1,2·105 Па
V1 = 4 л = 4·10–3 м3
a = 2,5
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20030

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот аргон
Т1 = 400 К
Р1 = 1,2·105 Па
V1 = 3 л = 3·10–3 м3
a = 2,5
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20031

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот водород
Т1 = 450 К
Р1 = 2,2·105 Па
V1 = 4 л = 4·10–3 м3
a = 2,5
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20032

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот водород
Т1 = 450 К
Р1 = 2,2·105 Па
V1 = 3 л = 3·10–3 м3
a = 2,5
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20034

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — водяной пар
Т1 = 450 К
Р1 = 2,3·105 Па
V1 = 4 л = 4·10–3 м3
a = 2,5
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20035

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — водяной пар
Т1 = 450 К
Р1 = 2,3·105 Па
V1 = 3 л = 3·10–3 м3
a = 2,5
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20036

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот воздух
Т1 = 350 К
Р1 = 2,4·105 Па
V1 = 4 л = 4·10–3 м3
a = 2,5
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20037

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот воздух
Т1 = 350 К
Р1 = 2,4·105 Па
V1 = 3 л = 3·10–3 м3
a = 2,5
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20038

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот гелий
Т1 = 350 К
Р1 = 2,5·105 Па
V1 = 4 л = 4·10–3 м3
a = 2,5
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20039

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот гелий
Т1 = 350 К
Р1 = 2,5·105 Па
V1 = 3 л = 3·10–3 м3
a = 2,5
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20040

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот кислород
Т1 = 420 К
Р1 = 2,6·105 Па
V1 = 4 л = 4·10–3 м3
a = 2,5
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20041

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот кислород
Т1 = 420 К
Р1 = 2,6·105 Па
V1 = 3 л = 3·10–3 м3
a = 2,5
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20042

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — углекислый газ
Т1 = 420 К
Р1 = 2,7·105 Па
V1 = 4 л = 4·10–3 м3
a = 2,5
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20043

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — углекислый газ
Т1 = 420 К
Р1 = 2,7·105 Па
V1 = 3 л = 3·10–3 м3
a = 2,5
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20044

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот
Т1 = 350 К
Р1 = 2,7·105 Па
V1 = 5 л = 5·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20045

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот аргон
Т1 = 350 К
Р1 = 2,6·105 Па
V1 = 5 л = 5·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20046

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот аргон
Т1 = 350 К
Р1 = 2,6·105 Па
V1 = 6 л = 6·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20047

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот водород
Т1 = 360 К
Р1 = 2,5·105 Па
V1 = 5 л = 5·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20049

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот водород
Т1 = 360 К
Р1 = 2,5·105 Па
V1 = 6 л = 6·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20050

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — водяной пар
Т1 = 360 К
Р1 = 2,4·105 Па
V1 = 5 л = 5·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20051

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — водяной пар
Т1 = 360 К
Р1 = 2,4·105 Па
V1 = 6 л = 6·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20052

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот воздух
Т1 = 380 К
Р1 = 2,3·105 Па
V1 = 5 л = 5·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20053

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот воздух
Т1 = 380 К
Р1 = 2,3·105 Па
V1 = 5 л = 6·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20054

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот гелий
Т1 = 380 К
Р1 = 2,2·105 Па
V1 = 5 л = 6·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20055

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот кислород
Т1 = 440 К
Р1 = 1,2·105 Па
V1 = 5 л = 6·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20058

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот кислород
Т1 = 440 К
Р1 = 1,2·105 Па
V1 = 6 л = 6·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20060

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — углекислый газ
Т1 = 400 К
Р1 = 1,3·105 Па
V1 = 5 л = 5·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20061

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — углекислый газ
Т1 = 400 К
Р1 = 1,3·105 Па
V1 = 6 л = 6·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20062

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот
Т1 = 450 К
Р1 = 1,3·105 Па
V1 = 5 л = 5·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20063

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот
Т1 = 450 К
Р1 = 1,3·105 Па
V1 = 6 л = 6·10–3 м3
a = 3
b = 1,6
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20064

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот воздух
Т1 = 400 К
Р1 = 1,2·105 Па
V1 = 5 л = 5·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 20065

Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам P1, V1, T1. Объем газа после изотермического расширения V2 = aV1, после адиабатического расширения — V3 = bV2.

Дано: газ — азот воздух
Т1 = 400 К
Р1 = 1,2·105 Па
V1 = 6 л = 6·10–3 м3
a = 3
b = 1,8
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре Т1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P,V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.


Задача 24930

Рабочее тело тепловой машины, работающей по идеальному циклу Карно, в каждом цикле получает от нагревателя ΔQ = 8,4 кДж и k = 80 % из них передает холодильнику. Определите КПД η цикла и работу А, совершаемую машиной в каждом цикле.