| |||||||||||||||||||||||||
Специальный поиск | |||||||||||||||||||||||||
|
|||||||||||||||||||||||||
тангенциальное нормальное полное ускорения Задача 40000 Колесо с радиусом 0,1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = 5+t+2t2+t3 рад. Для точек, лежащих на ободе колеса, определить угловую скорость, угловое, нормальное, тангенциальное и полное ускорения к концу второй секунды. Какой угол образует вектор полного ускорения и вектор линейной скорости? Задача 40639 Материальная точка движется по окружности радиуса 1 м согласно уравнению s = 8t – 0,2t3. Найти скорость, тангенциальное, нормальное и полное ускорение в момент времени 3 с. Задача 26687 Колесо радиусом 0,3 м вращается согласно уравнению φ = 5–2t+0,3t2. Найти нормальное, тангенциальное и полное ускорение точек на ободе колеса через 5 с после начала движения. Задача 12224 Шарик массы m = 100 г, подвешенный на нити, отвели в сторону так, что нить образовала прямой угол с вертикалью, а затем отпустили. Найти: 1) тангенциальное, нормальное и полное ускорение и натяжение нити в зависимости от угла θ отклонения нити от вертикали; 2) натяжение нити в тот момент, когда вертикальная составляющая скорости шарика максимальна. Задача 12612 Используя данные предыдущей задачи, определить: 1) частоту вращения диска в момент времени t2 в об/с и об/мин; 2) в момент времени t2 определить скорость, нормальное, тангенциальное и полное ускорение точек, находящихся на расстоянии 10 см от оси вращения. Задача 13816 Точка движется по кругу так, что зависимость пути от времени задается уравнением: S = А + Bt +Ct2, где В = –2 м/с и С = 1 м/с2. Найти линейную скорость точки, ее тангенциальное, нормальное и полное ускорение через 3 с после начала движения, если известно, что нормальное ускорение в момент времени 2 с составляет 0,5 м/с2. Задача 14141 Найти нормальное, тангенциальное и полное ускорение электрона на произвольной стационарной орбите в ионе Не+. Задача 14700 Движение точки по окружности радиуса R = 4 м задано уравнением: S = A+Bt+Ct2. Определить тангенциальное, нормальное и полное ускорение точки в момент времени t = 2 с, если А = 10 м, В = –2 м/с и С = 1 м/с2. Задача 15622 Автомобиль движется по закруглению шоссе, имеющему радиус кривизны 50 м. Длина пути автомобиля выражается уравнением S = 10+10t+0,5t2 (путь — в метрах, время — в секундах). Найти скорость автомобиля, его тангенциальное, нормальное и полное ускорения через 5 с после начала движения. Задача 15623 Материальная точка движется по окружности радиуса 80 см по закону S = 10t–0,1t3 (путь в метрах, время в секундах). Найти скорость, тангенциальное, нормальное и полное ускорения через 2 с после начала движения. Задача 20067 Материальная точка движется по окружности диаметром 40 м. Зависимость ее координаты от времени движения определяется уравнением S = t3+4t2–3t+8. В какой момент точка изменяет направление движения? Определить пройденный путь, скорость, нормальное, тангенциальное и полное ускорение движущейся точки через 4 с после начала движения. Задача 19975 Тело движется по криволинейной траектории. Пройденный путь меняется со временем по закону s = 2 + 0,5t2, м. Определить нормальное, тангенциальное и полное ускорение при t = 1 с. Радиус кривизны траектории движения в этот момент времени равен 50 см. Какова средняя скорость за 1 с движения? Задача 19977 Материальная точка начала вращаться с постоянным угловым ускорением из положения 1 и через 0,1 с оказалась в положении 2. Найти угловые ускорение и скорость в точке 2. Указать направления тангенциального, нормального и полного ускорений, а также линейной и угловой скоростей для положения 2. Задача 22807 Движение точки по окружности радиусом R = 2 м задано уравнением φ = A+Bt+Ct2, где А = 10 м, В = –3 м/с, С = 2 м/с2. Найти тангенциальное, нормальное и полное ускорения точки в момент времени t = 2 с. Задача 23836 Тело движется по окружности радиуса R = 2 м так, что угол поворота φ зависит от времени в соответствии с уравнением φ(t) = A+Bt+Ct2+Dt3, где A = 0,1 рад, B = 0 рад/с, C = 0 рад/с2, D = 0,001 рад/с3. Для момента времени t = 6 с определите: а) угол поворота φ, пройденный путь s и перемещение |Δr|; б) угловую и линейную скорости; в) угловое, тангенциальное, нормальное и полное ускорения. Задача 23976 За время Δt = 0,4 с скорость тела изменилась от V1 = 14 м/с до V2 = 20 м/с и вектор скорости повернулся на угол α = 5°. Определить средние значения полного, нормального и тангенциального ускорения за этот интервал времени. Задачу решить графически. Графическое построение выполнить в масштабе: в 1 см - 2 м/с. Рассчитать радиус кривизны траектории. Задача 24350 Точка движется по кривой так, что ее координаты на плоскости описываются уравнениями: X = A1 + B1t + С1t3, Y = А2 + B2t + С2t2, где A1 = 3 м, B1 = 0,5 м/с, C1 = 0,1 м/с2, A2 = 2 м, B2 = 0,3 м/с, C2 = 0,8 м/с2. Найдите скорость, полное, нормальное и тангенциальное ускорения точки в момент времени t = 2 с. Постройте следующие зависимости: v(t), an(t), aτ(t), a(t). Задача 24351 Твердое тело вращается с угловым ускорением ε и начальной угловой скоростью ω0. Через время t после начала вращения вектор полного ускорения точки тела, находящейся на расстоянии R = 5 м от оси, составляет угол α = 30° с направлением скорости; vt и ωt — линейная и угловая скорости в этот момент времени; а, ап = 0,8 м/с2 и аτ соответственно полное, нормальное и тангенциальное ускорения в этот момент времени. Найти ε. Задача 24484 Материальная точка движется по окружности радиусом r = 2 м согласно уравнению j = at+bt3, где a = 8 рад/с, b = -0,2 рад/с3. Найти тангенциальное, нормальное и полное ускорения в момент времени t = 3 с. Задача 24689 Материальная точка массой 1 г движется по окружности радиуса 2 м согласно уравнению S = 8t – 0,2t3. Найти угловую и линейную скорость точки, тангенциальное, нормальное и полное ускорение точки в момент времени t = 2 с. Задача 25016 Тело движется по окружности радиуса R = 0,9 м так, что угол поворота φ зависит от времени в соответствии с уравнением φ(t) = A+Bt+Ct2+Dt3, где A = 0,2 рад, B = 0,01 рад/с, C = 0,01 рад/с2, D = 0 рад/с3. Для момента времени t = 4 с определите: Задача 25017 Тело движется по окружности радиуса R = 3 м так, что угол поворота φ зависит от времени в соответствии с уравнением φ(t)=A+Bt+Ct2+Dt3, где A = 0,2 рад, B = 0 рад/с, C = 0,01 рад/с2, D = 0 рад/с3. Для момента времени t = 8 с определите: Задача 25018 Тело движется по окружности радиуса R = 0,4 м так, что угол поворота φ зависит от времени в соответствии с уравнением φ(t)=A+Bt+Ct2+Dt3, где A = 0 рад, B = –0,2 рад/с, C = 0,01 рад/с2, D = 0 рад/с3. Для момента времени t = 4 с определите: Задача 25021 Тело движется по окружности радиуса R = 2 м так, что угол поворота φ зависит от времени в соответствии с уравнением φ(t) = A+Bt+Ct2+Dt3, где A = 1 рад, B = 0 рад/с, C = 0 рад/с2, D = 0,002 рад/с3. Для момента времени t = 10 с определите: Задача 25178 Тело движется по окружности радиуса R = 0,5 м так, что угол поворота φ зависит от времени в соответствии с уравнением φ(t) = A+Bt+Ct2+Dt3, где A = 1 рад, B = 0 рад/с, C = 0 рад/с2, D = 0,002 рад/с3. Для момента времени t = 5 с определите: а) угол поворота φ, пройденный путь s и перемещение |Δr|; б) угловую и линейную скорости; в) угловое, тангенциальное, нормальное и полное ускорения. |