| ||||||||||||||||||||||||||||
Специальный поиск | ||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||
поверхностная плотность равномерно распределенного заряда Задача 10209 На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского – Гаусса: найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = –2σ, σ2 = σ; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ = 50 нКл/м2, r = 1,5R; 3) построить график E(r). Задача 10210 На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса: найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = σ, σ2 = –σ; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ = 60 нКл/м2, r = 3R; 3) построить график E(r). Задача 10211 На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского – Гаусса: найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = –σ, σ2 = 4σ; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ = 30 нКл/м2, r = 4R; 3) построить график E(r). Задача 10686 На бесконечном тонкостенном цилиндре диаметром d = 10 см равномерно распределен заряд с поверхностной плотностью Q = 1 мкКл/м2. Определить напряженность поля в точке, отстоящей от поверхности цилиндра на а = 5 см. Задача 60315 На бесконечном тонкостенном цилиндре диаметром d = 20 см равномерно распределен заряд с поверхностной плотностью σ = 4 мкКл/м2. Определить напряженность поля в точке, отстоящей от поверхности цилиндра на а = 15 см. Задача 11781 Бесконечная плоскость несет заряд, равномерно распределенный с поверхностной плотностью σ = 1 мкКл/м2. На некотором расстоянии от плоскости параллельно ей расположен круг радиусом r = 10 см. Вычислить поток ФE вектора напряженности через этот круг. Задача 11717 На пластинах плоского конденсатора равномерно распределен заряд с поверхностной плотностью σ = 0,2 мкКл/м2. Расстояние d между пластинами равно 1 мм. На сколько изменится разность потенциалов на его обкладках при увеличении расстояния d между пластинами до 3 мм? Задача 12131 Два коаксиальных цилиндра несут на себе равномерно распределенный заряд с поверхностными плотностями σ1 и σ2. Используя теорему Гаусса определить напряженность электрического поля в зависимости от расстояния до оси r. Принять σ1 = σ, σ2 = -σ, где σ = 10 нКл/м2. Радиусы цилиндров R1 = R и R2 = 2R, где R = 10 см. Построить график зависимости напряженности Е(r). Задача 12147 На бесконечном толстостенном цилиндре диаметром 10 см равномерно распределен заряд с поверхностной плотностью 10 мкКл/м2. Определить (в кВ/см) напряженность поля в точке, отстоящей от поверхности цилиндра на расстоянии 5 см. Задача 13236 Сферическая поверхность радиусом R = 0,1 м несет равномерно распределенный по ней заряд с поверхностной плотностью σ = 2·10–7 Кл/м2. Вне сферы на расстоянии R от ее поверхности находится точечный заряд q = 4·10–8 Кл (см. рис. 14.2.). Найти напряженность и потенциал электрического поля в центре сферы. Задача 13497 На рисунке 14.2 изображена отрицательно заряженная тонкостенная сфера радиусом R = 20 см, имеющая равномерно распределенный заряд с поверхностной плотностью σ = –0,2 мкКл/м2, и точечный заряд q = 100 нКл, находящийся на расстоянии R от поверхности сферы. Рассчитать напряженность и потенциал электрического поля в точках В и С, которые находятся в непосредственной близости от стенки сферы соответственно внутри и вне сферы, как показано на рис. 14.2. Задача 13779 На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (см. рис.). Требуется: 1) используя теорему Остроградского-Гаусса, найти зависимость E(r) напряженности электрического поля от расстояния для трех областей: I, II, III. Принять σ1 = 3σ, σ2 = σ, 2) вычислить напряженность E в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ = 10 нКл/м2; r = 2R; 3) построить график E(r). Задача 14608 Два коаксиальных цилиндра несут на себе равномерно распределенный заряд с поверхностными плотностями σ1 и σ2. Используя теорему Гаусса, определить напряженность электрического поля в зависимости от расстояния до оси r. Принять σ1 = –σ, σ2 = –2σ, где σ = 10 нКл/м2. Радиусы сфер R1 = R и R2 = 5R, где R = 10 см. Построить график зависимости напряженности E(r). Задача 15713 На двух концентрических сферах равномерно распределенный заряд с поверхностными плотностями σ1 = 3σ и σ2 = –σ, где σ = 10 нКл/м2. Радиусы сфер R и 2R, где R = 10 см. Определить напряженность электрического поля в зависимости от расстояния до оси r. Найти зависимость E(r), вычислить E(R1), E(R2), если R1 = 1,5R, R2 = 3R. Построить график зависимости напряженности Е(r). Задача 15715 Два коаксиальных цилиндра несут на себе равномерно распределенный заряд с поверхностными плотностями σ1 = 3σ и σ2 = –σ, где σ = 10 нКл/м2. Определить напряженность электрического поля в зависимости от расстояния до оси r. Радиусы цилиндров R и 2R, где R = 10 см. Найти зависимость E(r), вычислить E(R1), E(R2), если R1 = 1,5R, R2 = 3R. Построить график зависимости напряженности Е(r). Задача 16443 На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 = –120 нКл/м2 и σ2 = 60 нКл/м2. Используя теорему Гаусса, найти зависимость Е(r) напряженности электрического поля от координаты для трех областей: I, II и III. Вычислить напряженность Е электрического поля в точке, удаленной от оси цилиндров на расстояние r = 1,5R. Построить график зависимости Е(r). Задача 17353 На бесконечно длинном тонкостенном цилиндре диаметром D = 20 см равномерно распределен заряд с поверхностной плотностью σ = 4·10–6 Кл/м2. Определить напряженность электрического поля в точке, отстоящей от оси цилиндра на расстоянии S = 40 см. Задача 17419 На бесконечном тонкостенном цилиндре диаметром d = 10 см равномерно распределен заряд с поверхностной плотностью σ = 2 мкКл/м2. Определить напряженность поля в точке, отстоящей от поверхности цилиндра на расстоянии 12 см. Задача 17420 На бесконечном тонкостенном цилиндре диаметром d = 10 см равномерно распределен заряд с поверхностной плотностью σ = 1 мкКл/м2. Определить напряженность поля в точке, отстоящей от поверхности цилиндра на a = 5 см. Задача 18152 Полусфера несет заряд, равномерно распределенный с поверхностной плотностью σ = 1 нКл/м2. Найти напряженность Е электрического поля в геометрическом центре полусферы. Задача 19380 По пластине длиной L = 0,5 м и шириной S = 0,2 м равномерно распределен заряд с поверхностной плотностью σ = 10–7 Кл/м2. Пластина равномерно вращается с частотой f = 20 1/с относительно оси, проходящей через край пластины, параллельно стороне. Определить магнитный момент кругового тока, вызванного вращением пластины вокруг заданной оси. Задача 20842 По тонкому кольцу с внешним и внутренним радиусами (R1 = 5 см, R2 = 10 см) равномерно распределен заряд с поверхностной плотностью σ = 10–9 Кл/м2. Вычислить напряженность электрического поля в точке, лежащей на оси кольца, на расстоянии а = 10 см от его центра. Задача 21134 На бесконечном тонкостенном цилиндре диаметром d = 0,164 м равномерно распределен заряд с поверхностной плотностью σ = 5,5·10–6 Кл/м2. Определить напряженность в точке, отстоящей от поверхности цилиндра на расстоянии r = 4,81·10–2 м. Задача 22814 Две концентрические сферы несут на себе равномерно распределенный заряд с поверхностными плотностями σ1 и σ2. Используя теорему Гаусса определить напряженность электрического поля в зависимости от расстояния до центра сфер r. Принять σ1 = σ, σ2 = –σ, где σ = 10 нКл/м2. Радиусы сфер R1 = R и R2 = 3R, где R = 10 см. Построить график зависимости напряженности Е(r). Задача 22815 Две концентрические сферы несут на себе равномерно распределенный заряд с поверхностными плотностями σ1 и σ2. Используя теорему Гаусса определить напряженность электрического поля в зависимости от расстояния до центра сфер г. Принять σ1 = σ, σ2 = –4σ, где σ = 50 нКл/м2. Радиусы сфер R1 = R и R2 = 2R, где R = 10 см. Построить график зависимости напряженности Е(r). Задача 22974 По поверхности шара радиусом 5,00 мм равномерно распределен заряд с поверхностной плотностью 5,00 мкКл/м2. Шар находится в вершине прямого угла равнобедренного треугольника с длиной катета 40,0 мм. В двух других вершинах находятся точечные заряды 2,00 и –6,00 нКл. Найти потенциал электрического поля в середине гипотенузы треугольника. Задача 24709 Две концентрические сферы несут на себе равномерно распределенный заряд с поверхностными плотностями σ1 и σ2. Используя теорему Гаусса определить напряженность электрического поля в зависимости от расстояния до центра сфер r. Принять σ1 = –σ, σ2 = 2σ, где σ = 25 нКл/м2. Радиусы сфер R1 = R и R2 = 1,5R, где R = 10 см. Построить график зависимости напряженности Е(r). Задача 24782 На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ и –σ. σ = 60 нКл/м2. |